Avalanche Analysis from Multielectrode Ensemble Recordings in Cat, Monkey, and Human Cerebral Cortex during Wakefulness and Sleep
نویسندگان
چکیده
Self-organized critical states are found in many natural systems, from earthquakes to forest fires, they have also been observed in neural systems, particularly, in neuronal cultures. However, the presence of critical states in the awake brain remains controversial. Here, we compared avalanche analyses performed on different in vivo preparations during wakefulness, slow-wave sleep, and REM sleep, using high density electrode arrays in cat motor cortex (96 electrodes), monkey motor cortex and premotor cortex and human temporal cortex (96 electrodes) in epileptic patients. In neuronal avalanches defined from units (up to 160 single units), the size of avalanches never clearly scaled as power-law, but rather scaled exponentially or displayed intermediate scaling. We also analyzed the dynamics of local field potentials (LFPs) and in particular LFP negative peaks (nLFPs) among the different electrodes (up to 96 sites in temporal cortex or up to 128 sites in adjacent motor and premotor cortices). In this case, the avalanches defined from nLFPs displayed power-law scaling in double logarithmic representations, as reported previously in monkey. However, avalanche defined as positive LFP (pLFP) peaks, which are less directly related to neuronal firing, also displayed apparent power-law scaling. Closer examination of this scaling using the more reliable cumulative distribution function (CDF) and other rigorous statistical measures, did not confirm power-law scaling. The same pattern was seen for cats, monkey, and human, as well as for different brain states of wakefulness and sleep. We also tested other alternative distributions. Multiple exponential fitting yielded optimal fits of the avalanche dynamics with bi-exponential distributions. Collectively, these results show no clear evidence for power-law scaling or self-organized critical states in the awake and sleeping brain of mammals, from cat to man.
منابع مشابه
Maximum entropy models reveal the correlation structure in cortical neural activity during wakefulness and sleep
Maximum Entropy models can be inferred from large data-sets to uncover how local interactions generate collective dynamics. Here, we employ such models to investigate the characteristics of neurons recorded by multielectrode arrays in the cortex of human and monkey throughout states of wakefulness and sleep. Taking advantage of the separation of excitatory and inhibitory types, we construct a m...
متن کاملA computational model of cuneothalamic projection neurons.
The dorsal column nuclei, cuneatus and gracilis, play a fundamental role in the processing and integration of somesthetic ascending information. Intracellular and patch-clamp recordings obtained in cat in vivo have shown that cuneothalamic projection neurons present two modes of activity: oscillatory and tonic (Canedo et al 1998 Neuroscience 84 603-17). The former is the basis of generating, in...
متن کاملMultiscale Balance of Excitation and Inhibition in Single-unit Ensemble Recordings in Human and Monkey Neocortex
High-density ensemble recordings from the neocortex of human and monkey were used to categorize large ensembles of units into regular-spiking (RS) and fast-spiking (FS) cells based on spike waveform features and functional interactions. We adapted renormalization methods to evaluate the static and dynamic aspects of multiscale balance of these two interacting groups of cells. We found that the ...
متن کاملFacilitation of spindle-burst sleep by conditioning of electroencephalographic activity while awake.
A slow-wave electroencephalographic rhythm recorded from the sensorimotor cortex of the waking cat has been correlated behaviorally with the suppression of movement. Facilitation of this rhythm through conditioning selectively enhances a similar pattern recorded during sleep, the familiar spindle burst. The training also produced longer epochs of undisturbed sleep. The specific neural mechanism...
متن کاملInhibition determines membrane potential dynamics and controls action potential generation in awake and sleeping cat cortex.
Intracellular recordings of cortical neurons in awake cat and monkey show a depolarized state, sustained firing, and intense subthreshold synaptic activity. It is not known what conductance dynamics underlie such activity and how neurons process information in such highly stochastic states. Here, we combine intracellular recordings in awake and naturally sleeping cats with computational models ...
متن کامل